4. Scripting¶
The automatization suite of Mechanical also supports the scripting of the ACCS extension. The examples below show how the ACCS extension and module can be loaded into the scripting environment. Once loaded, the ACCS module can be used to activate the curing simulation, control the properties, add a support remover, add results plots etc.
Fig. 4.1 Mechanical’s Automation tab.¶
An alternative is to use the recording to generate the script automatically.
Fig. 4.2 Recording button translates the GUI actions into a script.¶
4.1. Documentation¶
This section presents the embedded help of the scripting module.
4.1.1. Project class¶
- class ACCS_scripting.Project[source]¶
Project class
Class to use to script ACCS from Workbench
Note
It is important to create the instance after loading the project
- CheckMaterial()[source]¶
Checks all materials in the project to see if they have not been imported from an earlier release.
4.1.2. Mechanical class¶
- class ACCS_scripting.Mechanical(API)[source]¶
Mechanical class
Class to use to script ACCS from Mechanical
- AddACCS(analysis)[source]¶
Adds the ACCS module to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultAlpha(analysis)[source]¶
Adds the ACCS Degree of Cure/Crystallisation result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultEpsElXX(analysis)[source]¶
Adds the elastic strain XX result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultEpsElXY(analysis)[source]¶
Adds the elastic strain XY result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultEpsElXZ(analysis)[source]¶
Adds the elastic strain XZ result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultEpsElYY(analysis)[source]¶
Adds the elastic strain YY result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultEpsElYZ(analysis)[source]¶
Adds the elastic strain YZ result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultEpsElZZ(analysis)[source]¶
Adds the elastic strain ZZ result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultEpsShXX(analysis)[source]¶
Adds the ACCS Cure Shrinkage XX result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultEpsShYY(analysis)[source]¶
Adds the ACCS Cure Shrinkage YY result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultEpsShZZ(analysis)[source]¶
Adds the ACCS Cure Shrinkage ZZ result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultHeat(analysis)[source]¶
Adds the ACCS Generated Heat result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultState(analysis)[source]¶
Adds the ACCS Material State result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddResultTg(analysis)[source]¶
Adds the ACCS Glass transition temperature/reference result to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
- AddSupportRemover(analysis)[source]¶
Adds the ACCS module to the input analysis.
- Parameters
analysis (Ansys.ACT.Automation.Mechanical.Analysis) – The analysis to which it should be added
4.1.3. ACCSload class¶
- class ACCS_scripting.ACCSload(load)[source]¶
ACCS load class
Class to use to script the ACCS load from Mechanical
- setAnalysisType(t)[source]¶
Sets the ACCS Analysis Type.
- Parameters
t (str) – The analysis type either ‘Full’ or ‘Fast’
- setMRCC(steps)[source]¶
Sets the ACCS Cure cycle for the mechanical FAST approach.
- Parameters
MRCC (list[step]) – The cure cycle shall be defined with a list of steps. A step can be defined as a Heating/Cooling step with [‘Heating Rate’, X, Y] defines a Heating/Cooling step at a rate of X C/min until reaching Y C or [‘Fixed temperature’, Z]: defines a Fixed temperature step with a duration of Z minutes.
4.1.4. ACCSsuprem class¶
- class ACCS_scripting.ACCSsuprem(load)[source]¶
ACCS support remover class
Class to use to script the ACCS support remover from Mechanical
- setStep(step)[source]¶
Defines when will the support remover will be active.
- Parameters
step (scalar) – The step number
4.1.5. ACCSsurexp class¶
- class ACCS_scripting.ACCSsurexp(result)[source]¶
ACCS support remover class
Class to use to script the ACCS support remover from Mechanical
- setExportPath(filepath)[source]¶
Sets the path to the exported path.
- Parameters
filepath (string) – The full path or relative path defining where the file will be saved
4.1.6. Interactive help¶
The user can also get help by running the help function on the different classes or the methods of the classes as illustrated in the following code.
1# Importing the scripting module
2import ACCS_scripting
3
4# Printing help for the Project class
5help(ACCS_scripting.Project)
6
7# Printing help for the AddACCS method of the Mechanical class
8help(ACCS_scripting.Mechanical.AddACCS)
4.2. Examples¶
The following examples are available at the following location:
%ProgramFiles%/LMAT/ACCS/v2.8_WB23.2/ScriptingDemo/
4.2.1. Full cure simulation¶
This example shows how a full cure simulation with a transient thermal and structural analysis can be defined via scripting. The first script (wbjn) adds the material to the WB project and the analysis systems, the second script (Python) is for Mechanical to add, configure, run, and post-process the cure simulation within Mechanical.
Workbench journal script¶
**Show/Hide Code**
1# encoding: utf-8
2
3Reset()
4
5import os
6import re
7
8directory = os.path.dirname(os.path.abspath(__file__))
9cdb = os.path.join(directory,"C-shape.cdb")
10script = os.path.join(directory,"test_scripting_full.py")
11
12
13import ACCS_scripting
14
15
16# Instantiating the project interface
17ACCS_proj = ACCS_scripting.Project()
18
19
20
21EngD_sys = GetTemplate(TemplateName="EngData").CreateSystem()
22EngD_EngD = EngD_sys.GetContainer(ComponentName="Engineering Data")
23for m in EngD_EngD.GetMaterials():
24 m.Delete()
25EngD_fav = EngData.LoadFavoriteItems()
26EngD_lib = EngData.OpenLibrary(Name="Cure Simulation",Source="ACCS_Library.xml")
27AS4 = EngD_EngD.ImportMaterial(Name="UD epoxy prepreg",Source="ACCS_Library.xml")
28AS4.SetAsDefaultSolidForModel()
29AS4.SetAsDefaultFluidForModel()
30EngD_engd = EngD_sys.GetComponent(Name="Engineering Data")
31
32
33FEM_sys = GetTemplate(TemplateName="External Model").CreateSystem(Position="Below",RelativeTo=EngD_sys)
34FEM_sys.GetContainer(ComponentName="Setup").AddDataFile(FilePath=cdb)
35FEM_setup = FEM_sys.GetComponent(Name="Setup")
36FEM_setup.Update(AllDependencies=True)
37
38
39
40MaterialReleases = ACCS_proj.CheckMaterial()
41if MaterialReleases!=None:
42 print("Materials need to be updated")
43 ACCS_proj.UpgradeMaterial()
44
45
46ACCS_proj.HomogeneizeMaterial()
47
48
49
50Th_tpl = GetTemplate(TemplateName="Transient Thermal",Solver="ANSYS")
51Full_Th_sys = Th_tpl.CreateSystem(Position="Right",RelativeTo=FEM_sys)
52Full_Th_sys.DisplayText = "Full - Transient Thermal"
53Full_Th_engd = Full_Th_sys.GetComponent(Name="Engineering Data")
54Full_Th_model = Full_Th_sys.GetComponent(Name="Model")
55Full_Th_setup = Full_Th_sys.GetContainer(ComponentName="Setup")
56Full_Th_solution = Full_Th_sys.GetComponent(Name="Solution")
57
58Full_Th_engd.ReplaceWithShare(TargetSystem=Full_Th_sys,ComponentToShare=EngD_engd,SourceSystem=EngD_sys)
59FEM_setup.TransferData(TargetComponent=Full_Th_model)
60
61
62Transfer_tpl = GetComponentTemplate(Name="SimulationSetupCellTemplate_StructuralStaticANSYS")
63St_tpl = GetTemplate(TemplateName="Static Structural",Solver="ANSYS")
64Full_St_sys = St_tpl.CreateSystem(
65 ComponentsToShare=[Full_Th_engd, Full_Th_model],
66 DataTransferFrom=[Set(FromComponent=Full_Th_solution, TransferName=None, ToComponentTemplate=Transfer_tpl)],
67 Position="Right",
68 RelativeTo=Full_Th_sys)
69Full_St_sys.DisplayText = "Full - Static Structural"
70Full_St_setup = Full_Th_sys.GetContainer(ComponentName="Setup")
71
72
73Full_Th_model.Update(AllDependencies=True)
74
75
76Full_St_setup.Edit()
77Full_St_setup.SendCommand(Command="WB.AppletList.Applet('DSApplet').App.Script.doToolsRunMacro(\""+re.escape(script)+"\")")
Mechanical journal script¶
**Show/Hide Code**
1# encoding: utf-8
2
3import os
4
5directory = os.path.dirname(os.path.abspath(__file__))
6RSO = os.path.join(directory,"C-shape.rso")
7
8
9import ACCS_scripting
10
11
12# Instantiating the mechanical interface
13ACCS_mech = ACCS_scripting.Mechanical(ExtAPI)
14
15
16LoadSteps = [15600, 20400, 20640]
17CureCycle = [ [ 0., 20.],
18 [ 3000.,120.],
19 [ 6600.,120.],
20 [ 8400.,180.],
21 [15600.,180.],
22 [20400., 20.],
23 [23000., 20.]]
24
25
26part = Model.Geometry.Children[0]
27body = part.Children[0]
28geoBody = body.GetGeoBody()
29
30
31#Adding Named Selection: Body
32NS_body = Model.AddNamedSelection()
33NS_body.Name = r"Body"
34NS_body.ScopingMethod = GeometryDefineByType.Worksheet
35NS_body.GenerationCriteria.Add(None)
36NS_body.GenerationCriteria[0].Action = SelectionActionType.Add
37NS_body.GenerationCriteria[0].EntityType = SelectionType.GeoBody
38NS_body.GenerationCriteria[0].Criterion = SelectionCriterionType.Size
39NS_body.GenerationCriteria[0].Operator = SelectionOperatorType.Largest
40NS_body.Generate()
41
42#Adding Named Selection: Outer
43NS_outer = Model.AddNamedSelection()
44NS_outer.Name = r"Outer"
45NS_outer.ScopingMethod = GeometryDefineByType.Worksheet
46NS_outer.GenerationCriteria.Add(None)
47NS_outer.GenerationCriteria[0].Action = SelectionActionType.Add
48NS_outer.GenerationCriteria[0].EntityType = SelectionType.GeoFace
49NS_outer.GenerationCriteria[0].Criterion = SelectionCriterionType.Size
50NS_outer.GenerationCriteria[0].Operator = SelectionOperatorType.Largest
51NS_outer.Generate()
52
53#Adding Named Selection: Inner
54NS_inner = Model.AddNamedSelection()
55NS_inner.Name = r"Inner"
56NS_inner.ScopingMethod = GeometryDefineByType.Worksheet
57NS_inner.GenerationCriteria.Add(None)
58NS_inner.GenerationCriteria[0].Action = SelectionActionType.Add
59NS_inner.GenerationCriteria[0].EntityType = SelectionType.GeoFace
60NS_inner.GenerationCriteria[0].Criterion = SelectionCriterionType.Size
61NS_inner.GenerationCriteria[0].Operator = SelectionOperatorType.RangeInclude
62NS_inner.GenerationCriteria[0].LowerBound = Quantity(0.001, 'm m')
63NS_inner.GenerationCriteria[0].UpperBound = Quantity(0.0015, 'm m')
64NS_inner.Generate()
65
66#Adding Named Selection: Edge
67NS_edge = Model.AddNamedSelection()
68NS_edge.Name = r"Edge"
69NS_edge.ScopingMethod = GeometryDefineByType.Worksheet
70NS_edge.GenerationCriteria.Add(None)
71NS_edge.GenerationCriteria[0].Action = SelectionActionType.Add
72NS_edge.GenerationCriteria[0].EntityType = SelectionType.GeoEdge
73NS_edge.GenerationCriteria[0].Criterion = SelectionCriterionType.LocationZ
74NS_edge.GenerationCriteria[0].Operator = SelectionOperatorType.LessThan
75NS_edge.GenerationCriteria[0].Value = Quantity(0.001, 'm')
76NS_edge.GenerationCriteria.Add(None)
77NS_edge.GenerationCriteria[1].Action = SelectionActionType.Filter
78NS_edge.GenerationCriteria[1].EntityType = SelectionType.GeoEdge
79NS_edge.GenerationCriteria[1].Criterion = SelectionCriterionType.Size
80NS_edge.GenerationCriteria[1].Operator = SelectionOperatorType.RangeInclude
81NS_edge.GenerationCriteria[1].LowerBound = Quantity(0.05, 'm')
82NS_edge.GenerationCriteria[1].UpperBound = Quantity(0.06, 'm')
83NS_edge.Generate()
84
85#Adding Named Selection: DX
86NS_DX = Model.AddNamedSelection()
87NS_DX.Name = r"DX"
88NS_DX.ScopingMethod = GeometryDefineByType.Worksheet
89NS_DX.GenerationCriteria.Add(None)
90NS_DX.GenerationCriteria[0].Action = SelectionActionType.Add
91NS_DX.GenerationCriteria[0].EntityType = SelectionType.GeoVertex
92NS_DX.GenerationCriteria[0].Criterion = SelectionCriterionType.LocationX
93NS_DX.GenerationCriteria[0].Operator = SelectionOperatorType.Smallest
94NS_DX.GenerationCriteria.Add(None)
95NS_DX.GenerationCriteria[1].Action = SelectionActionType.Filter
96NS_DX.GenerationCriteria[1].EntityType = SelectionType.GeoVertex
97NS_DX.GenerationCriteria[1].Criterion = SelectionCriterionType.LocationZ
98NS_DX.GenerationCriteria[1].Operator = SelectionOperatorType.Smallest
99NS_DX.Generate()
100
101#Adding Named Selection: DY
102NS_DY = Model.AddNamedSelection()
103NS_DY.Name = r"DY"
104NS_DY.ScopingMethod = GeometryDefineByType.Worksheet
105NS_DY.GenerationCriteria.Add(None)
106NS_DY.GenerationCriteria[0].Action = SelectionActionType.Add
107NS_DY.GenerationCriteria[0].EntityType = SelectionType.GeoFace
108NS_DY.GenerationCriteria[0].Criterion = SelectionCriterionType.Size
109NS_DY.GenerationCriteria[0].Operator = SelectionOperatorType.Smallest
110NS_DY.GenerationCriteria.Add(None)
111NS_DY.GenerationCriteria[1].Action = SelectionActionType.Filter
112NS_DY.GenerationCriteria[1].EntityType = SelectionType.GeoFace
113NS_DY.GenerationCriteria[1].Criterion = SelectionCriterionType.LocationX
114NS_DY.GenerationCriteria[1].Operator = SelectionOperatorType.LessThan
115NS_DY.GenerationCriteria[1].Value = Quantity(0.005, 'm')
116NS_DY.Generate()
117
118#Adding Named Selection: DZ
119NS_DZ = Model.AddNamedSelection()
120NS_DZ.Name = r"DZ"
121NS_DZ.ScopingMethod = GeometryDefineByType.Worksheet
122NS_DZ.GenerationCriteria.Add(None)
123NS_DZ.GenerationCriteria[0].Action = SelectionActionType.Add
124NS_DZ.GenerationCriteria[0].EntityType = SelectionType.GeoFace
125NS_DZ.GenerationCriteria[0].Criterion = SelectionCriterionType.LocationZ
126NS_DZ.GenerationCriteria[0].Operator = SelectionOperatorType.Smallest
127NS_DZ.Generate()
128
129
130#Adding element orientation
131EO = Model.Geometry.AddElementOrientation()
132EO.BodyLocation = NS_body
133EO.SurfaceLocation = NS_inner
134EO.EdgeLocation = NS_edge
135EO.AxisEdgeOrientation = EO.AxisEdgeOrientation.NegativeXAxis
136
137
138
139
140###############################################################
141#
142# THERMAL ANALYSIS
143#
144###############################################################
145
146TH_analysis = Model.Analyses[0]
147TH_solution = TH_analysis.Solution
148
149
150TH_analysis.InitialConditions[0].InitialTemperatureValue = Quantity(20,'C')
151
152
153AS = TH_analysis.AnalysisSettings
154AS.NumberOfSteps = len(LoadSteps)
155for CSN in range(len(LoadSteps),0,-1):
156 AS.SetStepEndTime(CSN, Quantity(LoadSteps[CSN-1], "sec"))
157 AS.SetAutomaticTimeStepping(CSN, AutomaticTimeStepping.On)
158 AS.SetCarryOverTimeStep(CSN, AutomaticTimeStepping.On)
159 AS.SetInitialTimeStep(CSN, Quantity(120, "sec"))
160 AS.SetMinimumTimeStep(CSN, Quantity( 60, "sec"))
161 AS.SetMaximumTimeStep(CSN, Quantity(240, "sec"))
162
163
164conv = TH_analysis.AddConvection()
165conv.Location = NS_inner
166conv.FilmCoefficient.Output.DiscreteValues = [Quantity(10, "W m^-1 m^-1 C^-1")]
167conv.AmbientTemperature.Inputs[0].DiscreteValues = [Quantity(t[0], "s") for t in CureCycle]
168conv.AmbientTemperature.Output.DiscreteValues = [Quantity(t[1], "C") for t in CureCycle]
169
170
171TH_ACCS_ld = ACCS_mech.AddACCS(TH_analysis)
172
173
174TH_temp = TH_solution.AddTemperature()
175
176TH_ACCS_res_state = ACCS_mech.AddResultState(TH_analysis)
177TH_ACCS_res_alpha = ACCS_mech.AddResultAlpha(TH_analysis)
178TH_ACCS_res_Tg = ACCS_mech.AddResultTg(TH_analysis)
179TH_ACCS_res_qdot = ACCS_mech.AddResultHeat(TH_analysis)
180
181
182TH_solution.Solve(True)
183
184
185
186
187###############################################################
188#
189# STRUCTURAL ANALYSIS
190#
191###############################################################
192
193ST_analysis = Model.Analyses[1]
194ST_solution = ST_analysis.Solution
195
196
197ACCS_mech.CopyAnalysisSettings(TH_analysis, ST_analysis)
198
199
200ST_importedload = ST_analysis.GetChildren(DataModelObjectCategory.ImportedBodyTemperature, True)[0]
201ST_importedload.PropertyByName('PROPID_AnalysisTimeDefinition').InternalValue = 0
202
203
204ST_frictionless = ST_analysis.AddFrictionlessSupport()
205ST_frictionless.Location = NS_inner
206
207ST_DX = ST_analysis.AddDisplacement()
208ST_DX.Location = NS_DX
209ST_DX.PropertyByName('ComponentX').InternalValue = 0
210for CSN in range(0,len(LoadSteps)-1,+1):
211 ST_DX.SetActivateAtLoadStep(CSN+1,False)
212for CSN in range(len(LoadSteps)-1,len(LoadSteps),+1):
213 ST_DX.SetActivateAtLoadStep(CSN+1,True)
214ST_DX.Name = NS_DX.Name
215
216
217ST_DY = ST_analysis.AddDisplacement()
218ST_DY.Location = NS_DY
219ST_DY.PropertyByName('ComponentY').InternalValue = 0
220ST_DY.Name = NS_DY.Name
221
222ST_DZ = ST_analysis.AddDisplacement()
223ST_DZ.Location = NS_DZ
224ST_DZ.PropertyByName('ComponentZ').InternalValue = 0
225ST_DZ.Name = NS_DZ.Name
226
227
228ST_ACCS_ld = ACCS_mech.AddACCS(ST_analysis)
229ST_ACCS_ld.setAnalysisType('Full')
230ST_ACCS_ld.setViscoElasticity('Disabled')
231
232
233ST_ACCS_suprem = ACCS_mech.AddSupportRemover(ST_analysis)
234ST_ACCS_suprem.setSurfacesByNamedSelection(NS_inner)
235ST_ACCS_suprem.setStep(str(len(LoadSteps)))
236
237
238ST_ACCS_surexp = ACCS_mech.AddSurfaceExporter(ST_analysis)
239ST_ACCS_surexp.setSurfacesByNamedSelection(NS_outer)
240ST_ACCS_surexp.setExportPath(RSO)
241
242
243ST_TOTDEF = ST_solution.AddTotalDeformation()
244
245ST_EPTHXX = ST_solution.AddThermalStrain()
246ST_EPTHXX.NormalOrientation = NormalOrientationType.XAxis
247ST_EPTHXX.Name = 'EPTHXX'
248
249ST_EPTHYY = ST_solution.AddThermalStrain()
250ST_EPTHYY.NormalOrientation = NormalOrientationType.YAxis
251ST_EPTHYY.Name = 'EPTHYY'
252
253ST_EPTHZZ = ST_solution.AddThermalStrain()
254ST_EPTHZZ.NormalOrientation = NormalOrientationType.ZAxis
255ST_EPTHZZ.Name = 'EPTHZZ'
256
257ST_ACCS_res_state = ACCS_mech.AddResultState(ST_analysis)
258ST_ACCS_res_alpha = ACCS_mech.AddResultAlpha(ST_analysis)
259ST_ACCS_res_Tg = ACCS_mech.AddResultTg(ST_analysis)
260ST_ACCS_res_qdot = ACCS_mech.AddResultHeat(ST_analysis)
261
262ST_ACCS_res_EpsShXX = ACCS_mech.AddResultEpsShXX(ST_analysis)
263ST_ACCS_res_EpsShYY = ACCS_mech.AddResultEpsShYY(ST_analysis)
264ST_ACCS_res_EpsShZZ = ACCS_mech.AddResultEpsShZZ(ST_analysis)
265
266ST_ACCS_res_EpsElXX = ACCS_mech.AddResultEpsElXX(ST_analysis)
267ST_ACCS_res_EpsElYY = ACCS_mech.AddResultEpsElYY(ST_analysis)
268ST_ACCS_res_EpsElZZ = ACCS_mech.AddResultEpsElZZ(ST_analysis)
269ST_ACCS_res_EpsElXY = ACCS_mech.AddResultEpsElXY(ST_analysis)
270ST_ACCS_res_EpsElYZ = ACCS_mech.AddResultEpsElYZ(ST_analysis)
271ST_ACCS_res_EpsElXZ = ACCS_mech.AddResultEpsElXZ(ST_analysis)
272
273
274ST_solution.Solve(wait=True)
275
4.2.2. Fast cure simulation via MRCC¶
This example shows how a fast cure simulation with a three-step structural analysis can be defined via scripting. The first script (wbjn) adds the material to the WB project and the analysis system, the second script (Python) is for Mechanical to add, configure, run, and post-process the cure simulation within Mechanical. The cure cycle is defined by the manufacturer recommended cure-cycle (heat rate, and dwell times).
Workbench journal script¶
**Show/Hide Code**
1# encoding: utf-8
2
3Reset()
4
5import os
6import re
7
8directory = os.path.dirname(os.path.abspath(__file__))
9cdb = os.path.join(directory,"C-shape.cdb")
10script = os.path.join(directory,"test_scripting_fast_MRCC.py")
11
12
13import ACCS_scripting
14
15
16# Instantiating the project interface
17ACCS_proj = ACCS_scripting.Project()
18
19
20
21EngD_sys = GetTemplate(TemplateName="EngData").CreateSystem()
22EngD_EngD = EngD_sys.GetContainer(ComponentName="Engineering Data")
23for m in EngD_EngD.GetMaterials():
24 m.Delete()
25EngD_fav = EngData.LoadFavoriteItems()
26EngD_lib = EngData.OpenLibrary(Name="Cure Simulation",Source="ACCS_Library.xml")
27AS4 = EngD_EngD.ImportMaterial(Name="UD epoxy prepreg",Source="ACCS_Library.xml")
28AS4.SetAsDefaultSolidForModel()
29AS4.SetAsDefaultFluidForModel()
30EngD_engd = EngD_sys.GetComponent(Name="Engineering Data")
31
32
33FEM_sys = GetTemplate(TemplateName="External Model").CreateSystem(Position="Below",RelativeTo=EngD_sys)
34FEM_sys.GetContainer(ComponentName="Setup").AddDataFile(FilePath=cdb)
35FEM_setup = FEM_sys.GetComponent(Name="Setup")
36FEM_setup.Update(AllDependencies=True)
37
38
39
40MaterialReleases = ACCS_proj.CheckMaterial()
41if MaterialReleases!=None:
42 print("Materials need to be updated")
43 ACCS_proj.UpgradeMaterial()
44
45
46ACCS_proj.HomogeneizeMaterial()
47
48
49
50St_tpl = GetTemplate(TemplateName="Static Structural",Solver="ANSYS")
51Fast_MRCC_sys = St_tpl.CreateSystem(Position="Right",RelativeTo=FEM_sys)
52Fast_MRCC_sys.DisplayText = "Fast MRCC - Static Structural"
53Fast_MRCC_engd = Fast_MRCC_sys.GetComponent(Name="Engineering Data")
54Fast_MRCC_model = Fast_MRCC_sys.GetComponent(Name="Model")
55Fast_MRCC_setup = Fast_MRCC_sys.GetContainer(ComponentName="Setup")
56
57Fast_MRCC_engd.ReplaceWithShare(TargetSystem=Fast_MRCC_sys,ComponentToShare=EngD_engd,SourceSystem=EngD_sys)
58FEM_setup.TransferData(TargetComponent=Fast_MRCC_model)
59
60
61Fast_MRCC_model.Update(AllDependencies=True)
62
63
64Fast_MRCC_setup.Edit()
65Fast_MRCC_setup.SendCommand(Command="WB.AppletList.Applet('DSApplet').App.Script.doToolsRunMacro(\""+re.escape(script)+"\")")
Mechanical journal script¶
**Show/Hide Code**
1# encoding: utf-8
2
3Reset()
4
5import os
6import re
7
8directory = os.path.dirname(os.path.abspath(__file__))
9cdb = os.path.join(directory,"C-shape.cdb")
10script = os.path.join(directory,"test_scripting_fast_MRCC.py")
11
12
13import ACCS_scripting
14
15
16# Instantiating the project interface
17ACCS_proj = ACCS_scripting.Project()
18
19
20
21EngD_sys = GetTemplate(TemplateName="EngData").CreateSystem()
22EngD_EngD = EngD_sys.GetContainer(ComponentName="Engineering Data")
23for m in EngD_EngD.GetMaterials():
24 m.Delete()
25EngD_fav = EngData.LoadFavoriteItems()
26EngD_lib = EngData.OpenLibrary(Name="Cure Simulation",Source="ACCS_Library.xml")
27AS4 = EngD_EngD.ImportMaterial(Name="UD epoxy prepreg",Source="ACCS_Library.xml")
28AS4.SetAsDefaultSolidForModel()
29AS4.SetAsDefaultFluidForModel()
30EngD_engd = EngD_sys.GetComponent(Name="Engineering Data")
31
32
33FEM_sys = GetTemplate(TemplateName="External Model").CreateSystem(Position="Below",RelativeTo=EngD_sys)
34FEM_sys.GetContainer(ComponentName="Setup").AddDataFile(FilePath=cdb)
35FEM_setup = FEM_sys.GetComponent(Name="Setup")
36FEM_setup.Update(AllDependencies=True)
37
38
39
40MaterialReleases = ACCS_proj.CheckMaterial()
41if MaterialReleases!=None:
42 print("Materials need to be updated")
43 ACCS_proj.UpgradeMaterial()
44
45
46ACCS_proj.HomogeneizeMaterial()
47
48
49
50St_tpl = GetTemplate(TemplateName="Static Structural",Solver="ANSYS")
51Fast_MRCC_sys = St_tpl.CreateSystem(Position="Right",RelativeTo=FEM_sys)
52Fast_MRCC_sys.DisplayText = "Fast MRCC - Static Structural"
53Fast_MRCC_engd = Fast_MRCC_sys.GetComponent(Name="Engineering Data")
54Fast_MRCC_model = Fast_MRCC_sys.GetComponent(Name="Model")
55Fast_MRCC_setup = Fast_MRCC_sys.GetContainer(ComponentName="Setup")
56
57Fast_MRCC_engd.ReplaceWithShare(TargetSystem=Fast_MRCC_sys,ComponentToShare=EngD_engd,SourceSystem=EngD_sys)
58FEM_setup.TransferData(TargetComponent=Fast_MRCC_model)
59
60
61Fast_MRCC_model.Update(AllDependencies=True)
62
63
64Fast_MRCC_setup.Edit()
65Fast_MRCC_setup.SendCommand(Command="WB.AppletList.Applet('DSApplet').App.Script.doToolsRunMacro(\""+re.escape(script)+"\")")
4.2.3. Fast cure simulation via T vs t¶
This example shows how a fast cure simulation with a three-step structural analysis can be defined via scripting. The first script (wbjn) adds the material to the WB project and the analysis system, the second script (Python) is for Mechanical to add, configure, run, and post-process the cure simulation within Mechanical. The cure cycle is defined by the temperature versus time curve.
Workbench journal script¶
**Show/Hide Code**
1# encoding: utf-8
2
3Reset()
4
5import os
6import re
7
8directory = os.path.dirname(os.path.abspath(__file__))
9cdb = os.path.join(directory,"C-shape.cdb")
10script = os.path.join(directory,"test_scripting_fast_Tvst.py")
11
12
13import ACCS_scripting
14
15
16# Instantiating the project interface
17ACCS_proj = ACCS_scripting.Project()
18
19
20
21EngD_sys = GetTemplate(TemplateName="EngData").CreateSystem()
22EngD_EngD = EngD_sys.GetContainer(ComponentName="Engineering Data")
23for m in EngD_EngD.GetMaterials():
24 m.Delete()
25EngD_fav = EngData.LoadFavoriteItems()
26EngD_lib = EngData.OpenLibrary(Name="Cure Simulation",Source="ACCS_Library.xml")
27AS4 = EngD_EngD.ImportMaterial(Name="UD epoxy prepreg",Source="ACCS_Library.xml")
28AS4.SetAsDefaultSolidForModel()
29AS4.SetAsDefaultFluidForModel()
30EngD_engd = EngD_sys.GetComponent(Name="Engineering Data")
31
32
33FEM_sys = GetTemplate(TemplateName="External Model").CreateSystem(Position="Below",RelativeTo=EngD_sys)
34FEM_sys.GetContainer(ComponentName="Setup").AddDataFile(FilePath=cdb)
35FEM_setup = FEM_sys.GetComponent(Name="Setup")
36FEM_setup.Update(AllDependencies=True)
37
38
39
40MaterialReleases = ACCS_proj.CheckMaterial()
41if MaterialReleases!=None:
42 print("Materials need to be updated")
43 ACCS_proj.UpgradeMaterial()
44
45
46ACCS_proj.HomogeneizeMaterial()
47
48
49
50St_tpl = GetTemplate(TemplateName="Static Structural",Solver="ANSYS")
51Fast_Tvst_sys = St_tpl.CreateSystem(Position="Right",RelativeTo=FEM_sys)
52Fast_Tvst_sys.DisplayText = "Fast T vs t - Static Structural"
53Fast_Tvst_engd = Fast_Tvst_sys.GetComponent(Name="Engineering Data")
54Fast_Tvst_model = Fast_Tvst_sys.GetComponent(Name="Model")
55Fast_Tvst_setup = Fast_Tvst_sys.GetContainer(ComponentName="Setup")
56
57Fast_Tvst_engd.ReplaceWithShare(TargetSystem=Fast_Tvst_sys,ComponentToShare=EngD_engd,SourceSystem=EngD_sys)
58FEM_setup.TransferData(TargetComponent=Fast_Tvst_model)
59
60
61Fast_Tvst_model.Update(AllDependencies=True)
62
63
64Fast_Tvst_setup.Edit()
65Fast_Tvst_setup.SendCommand(Command="WB.AppletList.Applet('DSApplet').App.Script.doToolsRunMacro(\""+re.escape(script)+"\")")
Mechanical journal script¶
**Show/Hide Code**
1# encoding: utf-8
2
3Reset()
4
5import os
6import re
7
8directory = os.path.dirname(os.path.abspath(__file__))
9cdb = os.path.join(directory,"C-shape.cdb")
10script = os.path.join(directory,"test_scripting_fast_Tvst.py")
11
12
13import ACCS_scripting
14
15
16# Instantiating the project interface
17ACCS_proj = ACCS_scripting.Project()
18
19
20
21EngD_sys = GetTemplate(TemplateName="EngData").CreateSystem()
22EngD_EngD = EngD_sys.GetContainer(ComponentName="Engineering Data")
23for m in EngD_EngD.GetMaterials():
24 m.Delete()
25EngD_fav = EngData.LoadFavoriteItems()
26EngD_lib = EngData.OpenLibrary(Name="Cure Simulation",Source="ACCS_Library.xml")
27AS4 = EngD_EngD.ImportMaterial(Name="UD epoxy prepreg",Source="ACCS_Library.xml")
28AS4.SetAsDefaultSolidForModel()
29AS4.SetAsDefaultFluidForModel()
30EngD_engd = EngD_sys.GetComponent(Name="Engineering Data")
31
32
33FEM_sys = GetTemplate(TemplateName="External Model").CreateSystem(Position="Below",RelativeTo=EngD_sys)
34FEM_sys.GetContainer(ComponentName="Setup").AddDataFile(FilePath=cdb)
35FEM_setup = FEM_sys.GetComponent(Name="Setup")
36FEM_setup.Update(AllDependencies=True)
37
38
39
40MaterialReleases = ACCS_proj.CheckMaterial()
41if MaterialReleases!=None:
42 print("Materials need to be updated")
43 ACCS_proj.UpgradeMaterial()
44
45
46ACCS_proj.HomogeneizeMaterial()
47
48
49
50St_tpl = GetTemplate(TemplateName="Static Structural",Solver="ANSYS")
51Fast_Tvst_sys = St_tpl.CreateSystem(Position="Right",RelativeTo=FEM_sys)
52Fast_Tvst_sys.DisplayText = "Fast T vs t - Static Structural"
53Fast_Tvst_engd = Fast_Tvst_sys.GetComponent(Name="Engineering Data")
54Fast_Tvst_model = Fast_Tvst_sys.GetComponent(Name="Model")
55Fast_Tvst_setup = Fast_Tvst_sys.GetContainer(ComponentName="Setup")
56
57Fast_Tvst_engd.ReplaceWithShare(TargetSystem=Fast_Tvst_sys,ComponentToShare=EngD_engd,SourceSystem=EngD_sys)
58FEM_setup.TransferData(TargetComponent=Fast_Tvst_model)
59
60
61Fast_Tvst_model.Update(AllDependencies=True)
62
63
64Fast_Tvst_setup.Edit()
65Fast_Tvst_setup.SendCommand(Command="WB.AppletList.Applet('DSApplet').App.Script.doToolsRunMacro(\""+re.escape(script)+"\")")
4.3. Running the solver¶
It is also possible to run directly an input file generated by Mechanical using the ACCS integration in the ANSYS solver. To do so, one should use the cbatch files stored in the following directory:
On Windows: > %ProgramFiles%\LMAT\ACCS\v2.8_WB23.2\UPFs\
Two scripts are available:
- RunACCS_FULL.bat
Run the input file using the FULL approach
- RunACCS_FAST.bat
Run the input file using the FAST approach
They both accept every options the ANSYS solver accepts. Please refer to the ANSYS manual for more information regarding how to run the ANSYS solver.
On Windows, a complete example for the FULL approach wih would be the following:
1"%ProgramFiles%\LMAT\ACCS\v2.8_WB23.2\UPFs\RunACCS_FULL.bat" ^
2 -p ansys -s noread -l en-us -t -d win32 -b nolist ^
3 -smp -np4 ^
4 -dir "%CD%" ^
5 -j "jobname" ^
6 -i "%CD%\inputfile.inp" ^
7 -o "%CD%\logfile.out"